Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
2.
Nat Commun ; 14(1): 6493, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838725

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Subject(s)
Polycystic Kidney Diseases , Humans , Mice , Animals , Autophagy/genetics , Homeostasis , Fibrosis , Nerve Growth Factors/genetics
3.
Front Genet ; 14: 1198171, 2023.
Article in English | MEDLINE | ID: mdl-37415600

ABSTRACT

Objective: Wolfram syndrome (WFS) is an autosomal recessive disorder associated with juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing loss. We sought to elucidate the relationship between genotypic and phenotypic presentations of Wolfram syndrome which would assist clinicians in classifying the severity and prognosis of Wolfram syndrome more accurately. Approach: Patient data from the Washington University International Registry and Clinical Study for Wolfram Syndrome and patient case reports were analyzed to select for patients with two recessive mutations in the WFS1 gene. Mutations were classified as being either nonsense/frameshift variants or missense/in-frame insertion/deletion variants. Missense/in-frame variants were further classified as transmembrane or non-transmembrane based on whether they affected amino acid residues predicted to be in transmembrane domains of WFS1. Statistical analysis was performed using Wilcoxon rank-sum tests with multiple test adjustment applied via the Bonferonni correction. Results: A greater number of genotype variants correlated with earlier onset and a more severe presentation of Wolfram syndrome. Secondly, non-sense and frameshift variants had more severe phenotypic presentations than missense variants, as evidenced by diabetes mellitus and optic atrophy emerging significantly earlier in patients with two nonsense/frameshift variants compared with zero or one nonsense/frameshift variants. In addition, the number of transmembrane in-frame variants demonstrated a statistically significant dose-effect on age of onset of diabetes mellitus and optic atrophy among patients with either one or two in-frame variants. Summary/Conclusion: The results contribute to our current understanding of the genotype-phenotype relationship of Wolfram syndrome, suggesting that alterations in coding sequences result in significant changes in the presentation and severity of Wolfram. The impact of these findings is significant, as the results will aid clinicians in predicting more accurate prognoses and pave the way for personalized treatments for Wolfram syndrome.

4.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Article in English | MEDLINE | ID: mdl-36995380

ABSTRACT

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Optic Atrophy , Wolfram Syndrome , Humans , Animals , Mice , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Exenatide/therapeutic use , Optic Atrophy/pathology , Insulin-Secreting Cells/pathology , Mice, Knockout
5.
medRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824811

ABSTRACT

Objective: Wolfram syndrome (WFS) is an autosomal recessive disorder associated with juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing loss. We sought to elucidate the relationship between genotypic and phenotypic presentations of Wolfram syndrome which would assist clinicians in classifying the severity and prognosis of Wolfram syndrome more accurately. Approach: Patient data from the Washington University International Registry and Clinical Study for Wolfram Syndrome and patient case reports were analyzed to select for patients with two recessive mutations in the WFS1 gene. Mutations were classified as being either nonsense/frameshift variants or missense/in-frame insertion/deletion variants and statistical analysis was performed using unpaired and paired t-tests and one- and two-way ANOVA with Tukey's or Dunnett's tests. Results: A greater number of genotype variants correlated with earlier onset and a more severe presentation of Wolfram syndrome. Secondly, non-sense and frameshift variants had more severe phenotypic presentations than missense variants, as evidenced by optic atrophy emerging significantly earlier in patients with 2 nonsense/frameshift alleles compared with 0 missense transmembrane variants. In addition, the number of transmembrane in-frame variants demonstrated a statistically significant dose-effect on age of onset of diabetes mellitus and optic atrophy. Summary / Conclusions: The results contribute to our current understanding of the genotype-phenotype relationship of Wolfram syndrome, suggesting that alterations in coding sequences result in significant changes in the presentation and severity of Wolfram. The impact of these findings is significant, as the results will aid clinicians in predicting more accurate prognoses and pave the way for personalized treatments for Wolfram syndrome.

6.
Cell Metab ; 35(2): 332-344.e7, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36634673

ABSTRACT

Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased ß cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to ß cell failure, modeling the evolution of some forms of human type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Humans , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipoylation , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Glucose/metabolism , Mice, Knockout , Vesicular Transport Proteins/metabolism
7.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711449

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

8.
JCI Insight ; 7(18)2022 09 22.
Article in English | MEDLINE | ID: mdl-36134655

ABSTRACT

Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell-derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function through a combination treatment of chemical chaperones mitigated detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC-derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Optic Atrophy , Wolfram Syndrome , Homozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Proteins/genetics , Optic Atrophy/genetics , Optic Atrophy/pathology , Wolfram Syndrome/diagnosis , Wolfram Syndrome/genetics , Wolfram Syndrome/pathology
9.
Proc Natl Acad Sci U S A ; 119(35): e2116505119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994650

ABSTRACT

Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.


Subject(s)
Albuminuria , Carrier Proteins , Kidney , Mitochondria , Nephrotic Syndrome , Thioredoxins , Transcription Factor CHOP , Albuminuria/complications , Albuminuria/genetics , Albuminuria/prevention & control , Animals , Apoptosis , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Gene Deletion , Inflammasomes/metabolism , Kidney/metabolism , Kidney/pathology , MAP Kinase Kinase Kinase 5/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nephrotic Syndrome/complications , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Nephrotic Syndrome/prevention & control , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Transcription Factor CHOP/deficiency , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
10.
AACE Clin Case Rep ; 8(3): 128-130, 2022.
Article in English | MEDLINE | ID: mdl-35602877

ABSTRACT

Objective: Early diagnosis of syndromic monogenic diabetes allows for proper management and can lead to improved quality of life in the long term. This report aimed to describe 2 genetically confirmed cases of Wolfram syndrome, a rare endoplasmic reticulum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Case Report: A 16-year-old Caucasian male patient and a 25-year-old Caucasian female patient with a history of diabetes mellitus and optic nerve atrophy presented at our medical center. Both patients were initially diagnosed with type 1 diabetes but negative for islet autoantibodies. Their body mass indexes were under 25 at the diagnosis. Their history and presentation were highly suspicious for Wolfram syndrome. Discussion: The genetic tests revealed a known Wolfram syndrome 1 (WFS1) pathogenic variant (homozygous) in the 16-year-old male patient and 2 known WFS1 pathogenic variants (compound heterozygous) in the 25-year-old female patient with diabetes mellitus and optic nerve atrophy, confirming the diagnosis of Wolfram syndrome. The first patient had a moderate form, and the second patient had a milder form of Wolfram syndrome. Conclusion: Providers should consider monogenic diabetes genetic testing, including WFS1 gene, for patients with early-onset diabetes who are negative for islet autoantibodies and lean. Two patients described in this article could have been diagnosed with Wolfram syndrome before they developed optic nerve atrophy. Genetic testing is a valuable tool for the early detection of Wolfram syndrome, which leads to proper management and improved quality of life in patients with this rare medical condition.

11.
Front Neurosci ; 16: 795317, 2022.
Article in English | MEDLINE | ID: mdl-35495027

ABSTRACT

Wolfram syndrome is a rare disease caused by pathogenic variants in the WFS1 gene with progressive neurodegeneration. As an easily accessible biomarker of progression of neurodegeneration has not yet been found, accurate tracking of the neurodegenerative process over time requires assessment by costly and time-consuming clinical measures and brain magnetic resonance imaging (MRI). A blood-based measure of neurodegeneration, neurofilament light chain (NfL), is relatively inexpensive and can be repeatedly measured at remote sites, standardized, and measured in individuals with MRI contraindications. To determine whether NfL levels may be of use in disease monitoring and reflect disease activity in Wolfram syndrome, plasma NfL levels were compared between children and young adults with Wolfram syndrome (n = 38) and controls composed of their siblings and parents (n = 35) and related to clinical severity and selected brain region volumes within the Wolfram group. NfL levels were higher in the Wolfram group [median (interquartile range) NfL = 11.3 (7.8-13.9) pg/mL] relative to controls [5.6 (4.5-7.4) pg/mL]. Within the Wolfram group, higher NfL levels related to worse visual acuity, color vision and smell identification, smaller brainstem and thalamic volumes, and faster annual rate of decrease in thalamic volume over time. Our findings suggest that plasma NfL levels can be a powerful tool to non-invasively assess underlying neurodegenerative processes in children, adolescents and young adults with Wolfram syndrome.

12.
Acta Neuropathol ; 143(5): 547-569, 2022 05.
Article in English | MEDLINE | ID: mdl-35389045

ABSTRACT

Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD. The role of WFS1 in Tauopathies and its levels in tau pathology-associated neurodegeneration, however, is largely unknown. Here we report that WFS1 deficiency is associated with increased tau pathology and neurodegeneration, whereas overexpression of WFS1 reduces those changes. We also find that WFS1 interacts with tau protein and controls the susceptibility to tau pathology. Furthermore, chronic ER stress and autophagy-lysosome pathway (ALP)-associated genes are enriched in WFS1-high excitatory neurons in human AD at early Braak stages. The protein levels of ER stress and autophagy-lysosome pathway (ALP)-associated proteins are changed in tau transgenic mice with WFS1 deficiency, while overexpression of WFS1 reverses those changes. This work demonstrates a possible role for WFS1 in the regulation of tau pathology and neurodegeneration via chronic ER stress and the downstream ALP. Our findings provide insights into mechanisms that underpin selective neuronal vulnerability, and for developing new therapeutics to protect vulnerable neurons in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/pathology , Animals , Lysosomes/metabolism , Mice , Mice, Transgenic , Neurons/pathology , Protein Aggregates , Tauopathies/pathology
13.
Front Endocrinol (Lausanne) ; 13: 849204, 2022.
Article in English | MEDLINE | ID: mdl-35399956

ABSTRACT

Wolfram syndrome is a rare genetic disorder characterized by juvenile-onset diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, and progressive neurodegeneration. Pathogenic variants in the WFS1 gene are the main causes of Wolfram syndrome. WFS1 encodes a transmembrane protein localized to the endoplasmic reticulum (ER) and regulates the unfolded protein response (UPR). Loss of function of WFS1 leads to dysregulation of insulin production and secretion, ER calcium depletion, and cytosolic calpains activation, resulting in activation of apoptotic cascades. Although the terminal UPR has been shown to induce inflammation that accelerates pancreatic ß-cell dysfunction and death in diabetes, the contribution of pancreatic ß-cell inflammation to the development of diabetes in Wolfram syndrome has not been fully understood. Here we show that WFS1-deficiency enhances the gene expression of pro-inflammatory cytokines and chemokines, leading to cytokine-induced ER-stress and cell death in pancreatic ß-cells. PERK and IRE1α pathways mediate high glucose-induced inflammation in a ß-cell model of Wolfram syndrome. M1-macrophage infiltration and hypervascularization are seen in the pancreatic islets of Wfs1 whole-body knockout mice, demonstrating that WFS1 regulates anti-inflammatory responses in pancreatic ß-cells. Our results indicate that inflammation plays an essential role in the progression of ß-cell death and diabetes in Wolfram syndrome. The pathways involved in ER stress-mediated inflammation provide potential therapeutic targets for the treatment of Wolfram syndrome.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Membrane Proteins , Wolfram Syndrome , Animals , Endoribonucleases/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Loss of Function Mutation , Membrane Proteins/genetics , Mice , Protein Serine-Threonine Kinases , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Wolfram Syndrome/pathology
14.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613674

ABSTRACT

The endoplasmic reticulum (ER) is a cytosolic organelle that plays an essential role in the folding and processing of new secretory proteins, including insulin. The pathogenesis of diabetes, a group of metabolic disorders caused by dysfunctional insulin secretion (Type 1 diabetes, T1DM) or insulin sensitivity (Type 2 diabetes, T2DM), is known to involve the excess accumulation of "poorly folded proteins", namely, the induction of pathogenic ER stress in pancreatic ß-cells. ER stress is known to contribute to the dysfunction of the insulin-producing pancreatic ß-cells. T1DM and T2DM are multifactorial diseases, especially T2DM; both environmental and genetic factors are involved in their pathogenesis, making it difficult to create experimental disease models. In recent years, however, the development of induced pluripotent stem cells (iPSCs) and other regenerative technologies has greatly expanded research capabilities, leading to the development of new candidate therapies. In this review, we will discuss the mechanism by which dysregulated ER stress responses contribute to T2DM pathogenesis. Moreover, we describe new treatment methods targeting protein folding and ER stress pathways with a particular focus on pivotal studies of Wolfram syndrome, a monogenic form of syndromic diabetes caused by pathogenic variants in the WFS1 gene, which also leads to ER dysfunction.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Wolfram Syndrome , Humans , Wolfram Syndrome/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Endoplasmic Reticulum Stress/physiology , Insulin-Secreting Cells/metabolism , Insulin/metabolism
15.
CRISPR J ; 4(4): 502-518, 2021 08.
Article in English | MEDLINE | ID: mdl-34406036

ABSTRACT

Isogenic induced pluripotent stem cell (iPSC) lines are currently mostly created by homology directed repair evoked by a double-strand break (DSB) generated by CRISPR-Cas9. However, this process is in general lengthy and inefficient. This problem can be overcome, specifically for correction or insertion of transition mutations, by using base editing (BE). BE does not require DSB formation, hence avoiding creation of genomic off-target breaks and insertions and deletions, and as it is highly efficient, it also does not require integration of selection cassettes in the genome to enrich for edited cells. BE has been successfully used in many cell types as well as in some in vivo settings to correct or insert mutations, but very few studies have reported generation of isogenic iPSC lines using BE. Here, we describe a simple and fast workflow to generate isogenic iPSCs efficiently with a compound heterozygous or a homozygous Wolfram syndrome 1 (WFS1) mutation using adenine BE, without the need to include a genomic selection cassette and without off-target modifications. We demonstrated that correctly base-edited clones can be generated by screening only five cell clones in less than a month, provided that the mutation is positioned in a correct place with regards to the protospacer adjacent motif sequence and no putative bystander bases exist.


Subject(s)
Adenine , CRISPR-Cas Systems , Gene Editing , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques , Cell Line , Flow Cytometry , Gene Editing/methods , Gene Targeting , Genetic Vectors , High-Throughput Nucleotide Sequencing , Humans , Induced Pluripotent Stem Cells/cytology , Membrane Proteins/genetics , Mutation , Plasmids , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results
16.
BMC Biol ; 19(1): 147, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34320968

ABSTRACT

BACKGROUND: Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS: The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS: These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.


Subject(s)
Chromosomes, Human, Pair 15 , DNA Copy Number Variations , alpha7 Nicotinic Acetylcholine Receptor/genetics , Chromosomes, Human, Pair 15/genetics , Humans , Male , Neurons , Phenotype
17.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34185708

ABSTRACT

BACKGROUNDWolfram syndrome is a rare ER disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Although there is no treatment for Wolfram syndrome, preclinical studies in cell and rodent models suggest that therapeutic strategies targeting ER calcium homeostasis, including dantrolene sodium, may be beneficial.METHODSBased on results from preclinical studies on dantrolene sodium and ongoing longitudinal studies, we assembled what we believe is the first-ever clinical trial in pediatric and adult Wolfram syndrome patients with an open-label phase Ib/IIa trial design. The primary objective was to assess the safety and tolerability of dantrolene sodium in adult and pediatric Wolfram syndrome patients. Secondary objectives were to evaluate the efficacy of dantrolene sodium on residual pancreatic ß cell functions, visual acuity, quality-of-life measures related to vision, and neurological functions.RESULTSDantrolene sodium was well tolerated by Wolfram syndrome patients. Overall, ß cell functions were not significantly improved, but there was a significant correlation between baseline ß cell functions and change in ß cell responsiveness (R2, P = 0.004) after 6-month dantrolene therapy. Visual acuity and neurological functions were not improved by 6-month dantrolene sodium. Markers of inflammatory cytokines and oxidative stress, such as IFN-γ, IL-1ß, TNF-α, and isoprostane, were elevated in subjects.CONCLUSIONThis study justifies further investigation into using dantrolene sodium and other small molecules targeting the ER for treatment of Wolfram syndrome.TRIAL REGISTRATIONClinicalTrials.gov identifier NCT02829268FUNDINGNIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (DK112921, DK113487, DK020579), NIH/National Center for Advancing Translational Sciences (NCATS) (TR002065, TR000448), NIH training grant (F30DK111070), Silberman Fund, Ellie White Foundation, Snow Foundation, Unravel Wolfram Syndrome Fund, Stowe Fund, Eye Hope Foundation, Feiock Fund, Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from NIH/NCATS, Bursky Center for Human Immunology & Immunotherapy Programs.


Subject(s)
Dantrolene , Insulin-Secreting Cells , Interleukin-18/analysis , Interleukin-1beta/analysis , Quality of Life , Visual Acuity/drug effects , Wolfram Syndrome , Adolescent , Adult , Biological Availability , Calcium Signaling/drug effects , Child , Dantrolene/administration & dosage , Dantrolene/adverse effects , Dantrolene/pharmacokinetics , Dose-Response Relationship, Drug , Drug Monitoring/methods , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/statistics & numerical data , Muscle Relaxants, Central/administration & dosage , Muscle Relaxants, Central/adverse effects , Muscle Relaxants, Central/pharmacokinetics , Neurologic Examination/drug effects , Treatment Outcome , Wolfram Syndrome/diagnosis , Wolfram Syndrome/drug therapy , Wolfram Syndrome/metabolism , Wolfram Syndrome/physiopathology
18.
Cell Rep ; 35(4): 109040, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33910017

ABSTRACT

Endoplasmic reticulum (ER) dysregulation is associated with pathologies including neurodegenerative, muscular, and diabetic conditions. Depletion of ER calcium can lead to the loss of resident proteins in a process termed exodosis. To identify compounds that attenuate the redistribution of ER proteins under pathological conditions, we performed a quantitative high-throughput screen using the Gaussia luciferase (GLuc)-secreted ER calcium modulated protein (SERCaMP) assay, which monitors secretion of ER-resident proteins triggered by calcium depletion. We identify several clinically used drugs, including bromocriptine, and further characterize them using assays to measure effects on ER calcium, ER stress, and ER exodosis. Bromocriptine elicits protective effects in cell-based models of exodosis as well as in vivo models of stroke and diabetes. Bromocriptine analogs with reduced dopamine receptor activity retain similar efficacy in stabilizing the ER proteome, indicating a non-canonical mechanism of action. This study describes a strategic approach to identify small-molecule drugs capable of improving ER proteostasis in human disease conditions.


Subject(s)
Endoplasmic Reticulum/drug effects , Proteome/metabolism , Humans
19.
J Diabetes Complications ; 35(1): 107618, 2021 01.
Article in English | MEDLINE | ID: mdl-32518033

ABSTRACT

The endoplasmic reticulum (ER) lies at the crossroads of protein folding, calcium storage, lipid metabolism, and the regulation of autophagy and apoptosis. Accordingly, dysregulation of ER homeostasis leads to ß-cell dysfunction in type 1 and type 2 diabetes that ultimately culminates in cell death. The ER is therefore an emerging target for understanding the mechanisms of diabetes mellitus that captures the complex etiologies of this multifactorial class of metabolic disorders. Our strategy for developing ER-targeted diagnostics and therapeutics is to focus on monogenic forms of diabetes related to ER dysregulation in an effort to understand the exact contribution of ER stress to ß-cell death. In this manner, we can develop personalized genetic medicine for ERstress-related diabetic disorders, such as Wolfram syndrome. In this article, we describe the phenotypes and molecular pathogenesis of ERstress-related monogenic forms of diabetes.


Subject(s)
Endoplasmic Reticulum Stress , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Endoplasmic Reticulum , Humans , Insulin-Secreting Cells , Wolfram Syndrome
20.
Indian J Pediatr ; 88(6): 582-585, 2021 06.
Article in English | MEDLINE | ID: mdl-33206325

ABSTRACT

Initiation of desmopressin acetate (DDAVP) for untreated diabetes insipidus (DI) in Wolfram syndrome (WS) causes abrupt volume expansion resulting in particularly high secretion of Atrial Natriuretic Peptide (ANP) and/or Brain Natriuretic Peptide (BNP), which in turn blocks all stimulators of zona glomerulosa steroidogenesis, resulting in secondary mineralocorticoid deficiency and acute hyponatremia, causing renal salt wasting (RSW). Two sisters, a 19-y-old girl (A) and a 7-y-old girl (B) with WS, presented with severe polyuria-polydipsia due to never treated DI. Both had neurogenic bladder and "B" had severe hydronephrosis secondary to untreated grade III bilateral vesicoureteral reflux. They initiated therapy with oral melt DDAVP which resulted in RSW. ANP was found ×50 and BNP ×2-4 fold elevated. Fludrocortisone 100-200 × 2 µg/d controlled natriuresis and restored electrolytes to normal within 48 h. Fludrocortisone treatment rescues otherwise potentially life-threatening hyponatremia due to RSW and the secondary mineralocorticoid deficiency driven by elevated ANP and/or BNP, caused by sudden volume expansion following DDAVP initiation.


Subject(s)
Hyponatremia , Wolfram Syndrome , Atrial Natriuretic Factor , Child , Deamino Arginine Vasopressin/therapeutic use , Female , Fludrocortisone/therapeutic use , Humans , Hyponatremia/chemically induced , Hyponatremia/drug therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...